AIM: Design a Finite State Machine (FSM) that accepts all strings over input symbols {0, 1} which are divisible by 3.
As per the AIM, set of valid strings are represented by set A:
A = {0, 00, 000, 11, 011, 110, ...}
means any binary string that when divide by three gives remainder zero.
Let M be the machine for above AIM, hence it can be define as M(Q, Σ, 𝛿, q0, F)
where
Q: set of states: {q, q0, q1, q2}
Σ: set of input symbols: {0, 1}
q0: initial state (q)
F: set of Final states: {q0}
𝛿: Transition Function: (Transition state diagram is shown in Figure 1.)
- | ||
q | q0 | q1 |
q0 | q0 | q1 |
q1 | q2 | q0 |
q2 | q1 | q2 |
#include <iostream.h> #include <conio.h> #include <stdio.h> void main() { char Input[100]; clrscr(); cout<<"Enter a string to validate (input string should be of 0 and 1)\n"; gets(Input); int i=-1; q: i++; if(Input[i]=='0') { goto q0; } else if(Input[i]=='1') { goto q1; } else if(Input[i]=='\0') { goto Invalid; } else { goto Wrong; } q0: i++; if(Input[i]=='0') { goto q0; } else if(Input[i]=='1') { goto q1; } else if(Input[i]=='\0') { goto Valid; } else { goto Wrong; } q1: i++; if(Input[i]=='0') { goto q2; } else if(Input[i]=='1') { goto q0; } else if(Input[i]=='\0') { goto Invalid; } else { goto Wrong; } q2: i++; if(Input[i]=='0') { goto q1; } else if(Input[i]=='1') { goto q2; } else if(Input[i]=='\0') { goto Invalid; } else { goto Wrong; } Valid: cout<<"\n Output: Valid String"; goto exit; Invalid: cout<<"\n Output: Invalid String"; goto exit; Wrong: cout<<"\n Please enter binary string {format of 0, 1}"; exit: getch(); }