AIM: Design a Finite State Machine (FSM) that accepts all strings over input symbols {0, 1} having three consecutive 1's as a substring.
As per the AIM, set of valid strings are represented by set A:
A = {111, 0111, 1110, 0101011110101,...}
means any string should be declared valid if it contains 111 as a substring.
Let M be the machine for above AIM, hence it can be define as M(Q, Σ, 𝛿, q0, F)
where
Q: set of states: {A, B, C, D}
Σ: set of input symbols: {0, 1}
q0: initial state (A)
F: set of Final states: {D}
𝛿: Transition Function: (Transition state diagram is shown in Figure 1.)
- | ||
A | A | B |
B | A | C |
C | A | D |
D | D | D |
#include <iostream.h> #include <conio.h> #include <stdio.h> void main() { char Input[100]; clrscr(); cout<<"Enter a string to validate (input string should be of 0 and 1)\n"; gets(Input); int i=-1; A: i++; if(Input[i]=='0') { goto A; } else if(Input[i]=='1') { goto B; } else if(Input[i]=='\0') { goto Invalid; } else { goto Wrong; } B: i++; if(Input[i]=='0') { goto A; } else if(Input[i]=='1') { goto C; } else if(Input[i]=='\0') { goto Invalid; } else { goto Wrong; } C: i++; if(Input[i]=='0') { goto A; } else if(Input[i]=='1') { goto D; } else if(Input[i]=='\0') { goto Invalid; } else { goto Wrong; } D: i++; if(Input[i]=='0') { goto D; } else if(Input[i]=='1') { goto D; } else if(Input[i]=='\0') { goto Valid; } else { goto Wrong; } Valid: cout<<"\n Output: Valid String"; goto exit; Invalid: cout<<"\n Output: Invalid String"; goto exit; Wrong: cout<<"\n Please enter binary string {format of 0, 1}"; exit: getch(); }